位置:成果数据库 > 期刊 > 期刊详情页
基于DGM和TDNN的火电行业NO_x排放量变权组合预测(英文)
  • ISSN号:0258-8013
  • 期刊名称:《中国电机工程学报》
  • 时间:0
  • 分类:TM3-55[电气工程—电机]
  • 作者机构:[1]华北电力大学经济管理学院
  • 相关基金:国家自然科学基金项目(70671039)~~
中文摘要:

从区域火电行业NOx排放量预测问题的离散灰色、非线性和动态性等特征出发,建立了基于离散灰色预测模型(discrete grey model,DGM)和时延神经网络(time-delayedneural network,TDNN)模型的变权组合预测模型。其中,时延神经网络模型与传统静态神经网络(如BP、RBF神经网络)相比较,更能反映系统的动态特征,有利于提高预测的准确性;在组合变权系数确定上,采用了等维递补多项式拟合方法,提高组合预测的拟合精度。最后,以国家权威部门公布的1994—2009年火电行业相关历史数据为基础,对未来7年我国火电行业NOx排放量进行预测研究和分析。结果表明:从预测平均相对误差来看,变权组合预测为0.846%,而TDNN为1.296%,离散灰色预测则为3.472%,变权组合预测模型的预测精度明显高于单项预测模型;从预测结果趋势走向来看,组合预测结果与实际趋势最接近,较单项预测有更高的吻合度,预测结果准确可靠。

英文摘要:

从区域火电行业NOx排放量预测问题的离散灰色、非线性和动态性等特征出发,建立了基于离散灰色预测模型(discrete grey model,DGM)和时延神经网络(time-delayedneural network,TDNN)模型的变权组合预测模型。其中,时延神经网络模型与传统静态神经网络(如BP、RBF神经网络)相比较,更能反映系统的动态特征,有利于提高预测的准确性;在组合变权系数确定上,采用了等维递补多项式拟合方法,提高组合预测的拟合精度。最后,以国家权威部门公布的1994—2009年火电行业相关历史数据为基础,对未来7年我国火电行业NOx排放量进行预测研究和分析。结果表明:从预测平均相对误差来看,变权组合预测为0.846%,而TDNN为1.296%,离散灰色预测则为3.472%,变权组合预测模型的预测精度明显高于单项预测模型;从预测结果趋势走向来看,组合预测结果与实际趋势最接近,较单项预测有更高的吻合度,预测结果准确可靠。

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国电机工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国电机工程学会
  • 主编:张文涛
  • 地址:北京清河小营东路15号 中国电力科学研究院内
  • 邮编:100192
  • 邮箱:pcsee@epri.sgcc.com.cn
  • 电话:010-82812536 82812534 82812545
  • 国际标准刊号:ISSN:0258-8013
  • 国内统一刊号:ISSN:11-2107/TM
  • 邮发代号:82-327
  • 获奖情况:
  • 1992年全国优秀科技期刊三等奖,1992年中国科协优秀科技期刊二等奖,1996年中国科协优秀科技期刊二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:98970