位置:成果数据库 > 期刊 > 期刊详情页
基于层次分析法和径向基函数神经网络的中长期负荷预测综合模型
  • ISSN号:1000-3673
  • 期刊名称:电网技术
  • 时间:0
  • 页码:99-104
  • 语言:中文
  • 分类:TM715[电气工程—电力系统及自动化]
  • 作者机构:[1]华北电力大学,河北省保定市071003
  • 相关基金:国家自然科学基金资助项目(70671039).
  • 相关项目:基于协同知识挖掘的电力负荷预测理论研究
中文摘要:

中长期负荷预测是电力系统规划与运行的基础工作,提出基于3指标量,即指标总量、指标增长量和指标增长率的综合模型。首先构建层次分析(analytic hierarchy process,AHP)模型,分别对3个指标量进行分析评价,优选出每个指标量的最优预测模型,然后利用径向基函数(radial basic function,RBF)神经网络对3个最优模型的预测结果进行拟合,并将GDP因素也作为神经网络输入数据之一,输出最终的预测结果。AHP模型中综合考虑了模型预测误差和模型拟合度,并成功地加入了人工干预的因素,依据专家经验判断模型的信任度和预测结果趋势可信度。AHP模型采用与预测时刻最近的历史数据进行分析,因此具有较好的实时性。实验结果表明该综合模型具有较高的预测精度,实际应用效果较好。

英文摘要:

Long- and medium-term load forecasting is the foundation of power system planning and operation, for this reason a comprehensive model based on three index quantities, i.e., the total index quantity, the increasing index quantity and the index growth rate, is proposed. Firstly, an analytic hierarchy process (AHP) model is constructed to analyze and estimate the three index quantities respectively, then select out optimal forecasting model for each index quantity; secondly, by use of radial basic function neural network (RBFNN) the forecasted results from the three optimal models are fitted; thirdly, taking the GDP factor as one of the input data of neural network, the final forecasting result is output. In AHP model both forecasting error and the fitting degree of the model are comprehensively considered as well as the manual intervention is successfully added, finally according to expert experience the trust degree of the model and the confidence level of the trend of forecasting results are judged. The proposed AHP model uses the historical data nearest to the time point to carry out the forecasting for the analysis, therefore, it possesses better real-time performance. Experimental results show that using the proposed model a more accurate forecasting result can be obtained, and practical application results verify the practicability of this method..

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电网技术》
  • 北大核心期刊(2011版)
  • 主管单位:国家电网公司
  • 主办单位:国家电网公司
  • 主编:张文亮
  • 地址:北京清河小营东路15号中国电力科学研究院内
  • 邮编:100192
  • 邮箱:pst@epri.sgcc.com.cn
  • 电话:010-82812976 82812543
  • 国际标准刊号:ISSN:1000-3673
  • 国内统一刊号:ISSN:11-2410/TM
  • 邮发代号:82-604
  • 获奖情况:
  • 中国优秀科技期刊,电力部优秀科技期刊,全国中文核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:66600