本文给出了一类带不等式约束条件的集合Bu(n,2n+k)={(k1,k2,…,kn):{u+k1≥2 u+k1+k1≥2×2 … u+k1+k2+…+kn-1≥2(n-1) u+k1+k2+…+kn-1+kn=2n+k n,k1,k2…,kn∈Z^+,u,k∈Z}的元素个数的计算公式,并运用数学归纳方法给予了证明.
In this paper the counting formulas have been obtained for a class combinatorial set Bu(n,2n+k)={(k1,k2,…,kn):{u+k1≥2 u+k1+k1≥2×2 … u+k1+k2+…+kn-1≥2(n-1) u+k1+k2+…+kn-1+kn=2n+k n,k1,k2…,kn∈Z^+,u,k∈Z}with some conditions of inequality constraints and the results have been proved by appling the method of mathematical induction.