研究形如 u(t)=∫ t 0g(t,s)f^~(s,u(s),∫s 0 k(s,τ)u(τ))dτ,∫1 0h(s,τ)u(τ)dτ)ds 的模糊Volterra积分方程整体解的存在性.这里h,k,g是实值函数,f^~ 为强模糊Henstock可积的模糊数值函数.所用的方法和工具是利用模糊数值函数的等度可积性和非紧性测度的性质以及广义Darbo不动点定理.
In this paper, we prove the existence of global solutions for generalized fuzzy Volterra-type integral equations involving the strong Henstock integral in fuzzy number space. The functions governing the equations are supposed to satisfy some nonabsolute integrability or boundedness conditions. Our result improves the results of predecessors.