位置:成果数据库 > 期刊 > 期刊详情页
基于SVM的RSM模型拟合方法研究
  • ISSN号:1007-9807
  • 期刊名称:管理科学学报
  • 时间:0
  • 页码:31-41
  • 语言:中文
  • 分类:F253.3[经济管理—国民经济]
  • 作者机构:[1]郑州大学管理工程研究所,郑州450001, [2]天津大学管理学院,天津300072, [3]武汉大学经济与管理学院,武汉430072
  • 相关基金:国家自然科学基金资助项目(70572044).
  • 相关项目:制造业六西格玛设计方法和应用研究
中文摘要:

对于多极值、存在高阶交互作用和约束的复杂过程,参数RSM整体代表性差,难以达到全局最优;而非参数RSM在样本量有限时泛化性差,模型难以优化.将RSM模型拟合归结为一类有限制条件、可主动获取样本点的小样本学习问题;提出一种基于SVM的复杂过程RSM模型拟合方法。并提出了适用于RSM的实用性SVM核函数及参数选择方法.算例研究表明,所提的核函数及参数选择方法得到的泛化误差与其最小值的平均偏离率在20%以内;基于SVM的RSM拟合模型对因子约束、误差分布无严格限制,泛化性能、曲面重现能力均优于现有RSM。其平均泛化误差与样本量分别比非参数RSM降低约20%和30%,说明了所提方法的有效性与优越性.

英文摘要:

When a complex process is featured with multi-extreme of quality responses as well as high order interactions and constraints among influential factors, parametric response surface method (RSM) fails to fit the real surface and is hard to achieve global optimization; While non-parametric RSM results in poor generalization performance when the sample size is finite and is hard to optimize the response as well. In this paper, the model fitting phase of RSM is described as a sort of restricted small-sample learning problem which is able to actively gain sample points. Then, a Support Vector Machine (SVM) based method is proposed for the model fitting phase of RSM. A practical method for selecting SVM kernel functions and parameters is put forward for RSM as well. The simulations show that, by using the proposed method to select kernel functions and parameters, the average deviation ratio of SVM generalized error from the exhaustively searched minimum is less than 20%. The SVM based RSM model fitting approach has no rigid restriction for the normality of the response and non-constraints among the factors. Furthermore, it outperforms the existing RSM approaches in generalization and surface reconstruction performance. Compared with non-parametric RSM, the average generalized error and the sample size of the proposed approach decrease by about 20% and 30% respectively. All these demonstrate the adaptability and superiority of the proposed approach.

同期刊论文项目
期刊论文 149 会议论文 11
同项目期刊论文
期刊信息
  • 《管理科学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家自然科学基金委员会
  • 主办单位:国家自然科学基金委员会管理科学部
  • 主编:郭重庆
  • 地址:天津大学25教学楼A区908室
  • 邮编:300072
  • 邮箱:jmstju@263.net
  • 电话:022-27403197
  • 国际标准刊号:ISSN:1007-9807
  • 国内统一刊号:ISSN:12-1275/G3
  • 邮发代号:6-89
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国人文社科核心期刊,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:22041