建立信号转导通路的数学模型是系统生物学的一个重要目标.但是信号转导通路本身的复杂结构及其所表现出的强非线性特征,使得对该类模型的参数辨识十分困难.参数辨识所需要的测量数据的选择对于辨识结果有重要影响.本文研究了一类信号转导通路模型参数辨识中最小应测量状态的计算问题.给出了用于确定该最小应测量状态的目标函数,通过对目标函数进行简单的运算,确定了用来估计未知参数的最小应测量状态的数量,同时给出了一种计算系统状态对应于未知参数的敏感性系统曲线的新方法.以TNFα诱导的NF-κB信号转导通路为例进行了仿真研究,并给出了仿真结果.
One task of systems biology is to estimate unknown parameters of signal transduction pathways, which is very difficult because of the strong nonlinearity and complex structure of the signaling pathways. Measurements have great affection on the parameter estimation, so it is important to determine minimum states we should measure in order to estimate unknown parameters more exactly. This work develops a new method to deal with this problem, and based on this method, a new computation of sensitivity coefficient matrix is deduced. To illustrate its effectiveness, the TNF a mediated NF-κB signal transduction pathway is taken as an example. The simulation results are encouraging.