本文研究了某类形式的Briot-Bouquet微分方程的亚纯解结构问题.利用Nevanlinna值分布理论的有关知识,获得了该类微分方程的所有可能形式,以及当方程的阶为偶数时,给出了每一个形式的方程的亚纯解结构,推广了某些特定的Briot-Bouquet微分方程亚纯解结构的一些结果.
In this article,we study the problem of meromorphic solutions about some class of Briot-Bouquet differential equations.By the knowledge of Nevanlinna value-distribution theory, we obtain all the possible forms of this differential equations and give the meromorphic solutions of each form when the order of equations is even.Some results on meromorphic solutions of special Briot-Bouquet differential equations are extended.