利用Silvaco-TCAD仿真软件全面系统地分析了不同发射区表面浓度和结深对n型插指背接触(IBC)太阳电池短路电流、开路电压、填充因子及转换效率的影响。借鉴双极半导体器件抗二次击穿技术,详细分析了不同发射区结深、发射区边缘刻蚀技术和发射区边缘选择性掺杂技术对IBC电池热击穿特性的影响。结果表明:发射区表面浓度越大、结深越深,IBC电池效率越高。当发射区表面浓度为5×10^20cm^-3、结深为1μm时,转换效率高达23.35%。同时,深结发射区也有助于改善IBC电池的热击穿特性。发射区边缘刻蚀结构不具有改善IBC电池热击穿特性的作用,而发射区边缘选择性掺杂结构可有效改善IBC电池的热击穿特性,从而提高IBC太阳电池组件的可靠性。
The influences of different emitter surface concentrations and junction depths on n-type interdigitated back contact( IBC) crystalline silicon solar cell's short-circuit current,open-circuit voltage and fill factor and conversion efficiency were systematically studied using Silvaco TCAD simulation software. The influences of different emitter junction depths,emitter edge etching technology and emitter edge selective doping technology on IBC solar cell's thermal breakdown characteristic were studied in detail with reference to the preventing secondary breakdown resistance technique of the bipolar semiconductor device. The results show that the higher emitter surface concentration and the deeper the junction depth,the higher the IBC cell 's conversion efficiency. When the emitter surface concentration is5 × 1020cm- 3and the junction depth is 1 μm,the conversion efficiency reaches up to 23. 35%. Meanwhile,the thermal breakdown characteristic of the IBC solar cell is improved by deeper emitter junction depth. The thermal breakdown characteristic of the IBC solar cell could not be enhanced by emitter edge's etching structure,while could be improved by emitter edge selective doping structure,so as to improve the reliability of the IBC solar cell module.