本文在齐次Neumann边界条件下考虑食饵具有避难所的捕食者-食饵扩散模型,其功能反应函数为Holling-III型.主要讨论该系统全局吸引子的存在性和系统永久持续生存性,以及避难所对系统非负平衡点稳定性的影响.
In this paper, a predator-prey model with diffusion and Holling type III response function incorporating a prey refuge under homogeneous Neumann boundary condition is considered. The existence of a global attractor and permanence for this model are discussed. Moreover, the effect of the prey refuge on the stability properties of the non-negative equilibria is investigated.