研究了非线性项中含有时滞导数项的二阶中立型泛函微分方程(u(t)-cu(t-δ))″+a(t)u(t)=f(t,u(t),u(t-(?)(t)),u′(t-γ(t)))正周期解的存在性,获得了该方程存在正周期解和不存在正周期解的本质条件.这些条件是由系数函数a(t)与非线性项f(t,x,y,z)的关系描述的.我们的讨论基于正算子扰动方法与锥上的不动点指数理论.