讨论一类广义常微分方程边值问题 dx=d[A]x+dg,x(a)+μ∫a^bx(s)ds=x(b) 解的存在性和惟一性,其中x:[a,b]→Rn是[a,b]上的向量值函数,A是定义在[a,b]上的m×n阶矩阵值函数,g是n维向量实值函数并且μ∈R.借助伴随方程,给出了这类广义常微分方程边值问题解的存在性和惟一性.
The existence and uniqueness of solutions of boundary value problems for generalized linear ordinary differential equations of the form dx=d[A]x+dg, x(a)+μ∫a^bx(s)ds = x(b) are discussed ,where x:[a ,b]→ R^n is a vector valued function on [a,b], A is a m×n-matrix valued function on [a,b], gisan-dimensional real vector valued function and μ∈R . Necessary and sufficient conditions for the existence of solutions of boundary value problem for generalized linear differential equations are given by using adjoint equations .