本文研究如下形式的边值问题x(t)-x(0)-∫t0d[A(s)]x(s)=f(t)-f(0),t∈[0,1],(*)Mx(0)+Nx(1)+ε∫10K(τ)d[x(τ)]=r,(**)其中A,K是m×n矩阵值函数,f是一个n维实向量值函数.并且A,K在[0,1]上是有界变差且正则的,f在[0,1]上也是正则的,ε∈[0,1]是一个参数.本文得出问题(*)(**)解的存在唯一性条件,并讨论该问题的伴随问题.
In this paper,we study boundary value problems of the form x(t)-x(0)-∫t0d[A(s)]x(s)=f(t)-f(0),t∈[0,1],(*)Mx(0)+Nx(1)+ε∫10K(τ)d[x(τ)]=r,(**) where A and K are m × n -matrix valued functions, f is an n -dimensional real vector valued function, and A,K have bounded variations on [0,1] ,f is regulated on [0,1] and all of them are regular on (0,1). e E [0,1]is a parameter. We derive conditions for the existence and uniqueness of solutions to the given problem. Furthermore,we study adjoint problem of ( * ) ( ** ).