设T,X是完备可分的度量空间,T×X是乘积空间.设v是T上的完备的Borel概率测度,τ是X上的预测度.从v和τ出发,可以通过两种不同方式定义乘积空间T×X上的测度。证明在τ是σ-有限的情形下,这两种方式定义的测度都等于T×X上的乘积测度v×τ^*,其中τ^*表示由τ按方法Ⅰ所构造的外测度;在τ是非σ-有限时,证明了在一定的条件下函数τ(E1)与τ^*(E1)都是T上的可测函数,其中E包含T×X,Eτ={x∈E;(t,x)∈E}.
Let T and X be complete separable metric spaces, and T×X be their product space. Let v be a complete Borel probability measure on T and r a premeasure on X. From v and v we may define measures for the product space T×X by two different ways. In case r is σ- finite, we show that the measures defined by these two ways are exactly the product measure v × τ^* , where τ^* is the Method I measure induced by τ. Fore v non-a-finite, we proved under some assumptions, the functions τ(Et) and τ^* (Et) are measurable on T, where E包含T×X, Et= {x∈X; (t,x) ∈E}.