在该文中,令E表示一个迭代函数系统(X,T1,…,Tm)的吸引子.定义连续自映射f:E→E为,f(x)=Tj^-1(x),x∈Tj(E),j=1,…,m.给定φ∈CR(E),令 Kφ(δ,n)=sup{|∑k=0 n-1[φ(f^kx)-φ(f^ky)]|:y∈Bx(δ,n)}, 这里Bx(δ,n)表示Bowen球.取一个扩张常数ε,记Kφ=supnKφ(ε,n),定义v(E)={φ:Kφ〈∞}.对f:E→E,作为Ruelle的一个定理^[3,定理2.1]的一个应用,我们证明每个φ∈V(E)具有惟一的平衡态.此结果推广了文献[12]中的主要结果.
In this paper, let E denote the attrator of an iterated function system (X,T1,…,Tm). One can define a continuous self-mapping f : E → E by f(x) =Tj^-1(x),x∈Tj(E),j=1,…,m. Given φ∈CR(E), let Kφ(δ,n)=sup{|∑k=0 n-1[φ(f^kx)-φ(f^ky)]|:y∈Bx(δ,n)}, where Bx(δ, n) denotes the Bowen ball. Choosing an expansive constant ε, the authors write Kφ=supn Kφ(ε,n) and define V(E) = {φ : Kφ 〈 ∞}. For f : E → E, as some applications of a theorem by Ruelle^[3, Theorem 2.1] the authors show that each φ∈V(E) has a unique equilibrium state. The conclusions generalize the main result of Zhou and Luo.