设{ξn,n≥1)是正的随机变量序列,Eξ1=θ〉0,设Sn=∑i=1^nξ1,Yn=nθlog(Sn/(nθ))在该文中,当{ξn}是独立同分布或强平稳φ-混合的正随机变量序列时,作者给出功率和{Yn}用Wiener过程的强逼近结果.
Let {ξn,n≥ 1} be a sequence of positive random variables with Eξ1=θ 〉 0, and Sn = ∑n=1^nξi, Yn = nθ log(Sn/(nθ)). In this article, the author gives strong approximations of power sums {Yn} be Wiener process when {ξn} is a sequence of independent identically disributed random variables or a sequence of v-mixing stationary random variables. Key words: Power sums; Strong approximation; Wiener proces