{X,Xn;n≥1)为独立同分布的随机变量序列,EX=0,0〈EX^2=σ^2〈∞.记Sn=X1+X2+…+Xn.如果对1〈p〈2,r〉1+2/E满足E|X|^T〈∞,且E|X|^3〈∞,那么 limε→0 ε^2(T-P)/(2-p)-1∑^∞ n=1n^T/p-2-1/pE{|Sn|-εn1/p}+=p(2-p/(r-p)(2r-p-2))E|Z|^2(r-p)/2-p,其中Z服从均值为0,方差为σ^2的正态分布.
Let {X, Xn; n≥_ 1} be a sequence of i.i.d random variables,EX=0,0〈EX^2=σ^2〈∞.Set Sn=X1+X2+…+Xn.SupposeE|X|^3〈∞,we prove that is E|X|^T〈∞,for 1〈p〈2 and r〉1+2/E,then limε→0 ε^2(T-P)/(2-p)-1∑^∞ n=1n^T/p-2-1/pE{|Sn|-εn1/p}+=p(2-p/(r-p)(2r-p-2))E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ2.