设{Xn,n≥0}是同分布两两NQD随机变量序列,在E|X1|^r(log^+|X1|)^r〈∞,其中1〈y〈2,r〉0且r〉4γ-6条件下,证明了具有正规化序列,n^1/r的强大数律,即(Sn-ESn)/n^1/r→0 a.s..
Let {Xn ,n≥O} be a sequence of pairwise NQD identically distributed random variables. The strong law of large numbers for {Xn ,n≥O} with norming sequence n^1/r is obtained, 1〈γ〈2, under the conditions E|X1|^r(log^+ |X1| )^r〈∞,τ〉0,τ〉4γ-6.