主要目的是在脉冲微分方程中引入小参数,并研究了当ε→0+时,脉冲微分方程x.=εf(x,t),t≠ti,i=1,2,…n,Δx|t=ti=x(ti+)-x(ti)=εIi(x(ti))的解与平均值方程y.=ε[f0(y)+I0(y)]的解的关系.从而建立了脉冲微分方程Φ-有界变差解对小参数的连续依赖性.
This paper aimed at introducing small parameter in impulsive differential equation,the relationship between-bounded variation solution of x·=εf(x,t),t≠ti,i=1,2,…n,Δx|t=ti=x(ti+)-x(ti)=εIi(x(ti)) and the solution of average equation ty·=ε[f0(y)+I0(y)] was studied,then the continuous dependence on a small parameter of bounded variation solution for differential equation with impulse was established.