基于Goetschel-Voxman所定义的序关系(Goetschel Jr R,Voxman W.Elementaryfuzzy calculus.Fuzzy Sets and Systems,1986,18:31-43),讨论了模糊数值函数的可微性,并利用梯度讨论了定义在n-维空间上的无约束条件模糊规划的最优性条件以及有约束条件的模糊规划取得最优解的必要条件—Kuhn-Tucker条件.同时,对于凸模糊规划问题,给出了其取得最优解的充分条件和算例.
Based on the ordering of fuzzy numbers space proposed by Goetschel and Voxman (Goetschel Jr R, Voxman W. Elementary fuzzy calculus. Fuzzy Sets and Systems, 1986, 18: 31-43), the differentiability of fuzzy mappings is discussed. For a fuzzy programming with non-constraint conditions defined on n-dimension space, the optimal conditions are presented by using gradient. Furthermore, the necessity condition (Kuhn-Tucker condition) of optimal solution for constrained fuzzy programming is also obtained. At the same time, the sufficient conditions of optimality for convex fuzzy programming and a test example are given.