利用中温太阳能为甲醇分解的吸热反应供热,可以将中温太阳能转化为合成气燃料的化学能,同时提高燃料热值和太阳能的可用性,还可以实现太阳能与化石燃料的互补。本研究提出了太阳能热化学系统的一体化设计原则,建立了综合考虑太阳能集热、反应动力学和反应器结构参数的太阳能甲醇分解反应器的理论分析模型,并首次研制了5kw热功率的抛物槽式太阳能甲醇分解一体化实验装置。太阳能甲醇分解的实验结果表明太阳能集热器可以为甲醇分解提供200-300℃的反应温度,在辐照300-800W/m^2,甲醇进料量为0.5-41/h条件下,甲醇转化率可以达到50%-95%,投射到吸收-反应器上的太阳能转换为燃料化学能的效率可以达到30%-60%,具有良好的甲醇分解和太阳能转换性能。研制的实验装置体现了一体化设计特征,同时理论分析结果与实验结果也具有很好的一致性。本文研究成果将为开拓太阳能与化石能源互补的能量系统提供理论支撑和实验数据。
Low-grade solar thermal energy can be converted into high-grade chemical energy of syngas by using solar methanol decomposition. This can improve usability of solar energy. In this work, a 5 kW solar receiver-reactor for methanol decomposition was first designed and manufactured. The design principle of the solar thermochemical system was obtained, and theoretical model of the receiver-reactor synthetically considering the relationships of solar radiation, the reaction kinetics and the reactor's configuration was derived. Under solar beam radiation of 300-800 W/m^2 and at the feeding rates of 0.5 1/h-4 1/h of methanol, experimental investigation of methanol decomposition was carried out at the operation temperature of 200-300℃. The conversion of methanol can yield up to 50%-95% and the efficiency of solar thermal energy converted into chemical energy can also reach to 30%- 60%. The experimental results accorded with the theoretical analysis well, and the design target of the solar receiver-reactor is realized, This research will provide the useful theory and experimental data for the study of the energy system integrating solar thermal energy and fossil energy.