选取垂直流人工湿地无烟煤基质,采用不同类型金属化合物(CaCl2、ZnCl2、MgCl2、FeCl3、AlCl3、CoCl3)两两组合方式,在碱性环境下共沉淀生成9种不同类型的层状双金属氢氧化物LDHs并覆膜于基质表面;构建基质试验柱,分别对未改性及9种LDHs覆膜改性无烟煤基质进行模拟垂直流人工湿地脱氮效果研究.结果表明,9种不同组合方式生成的LDHs均能有效地进行无烟煤基质覆膜改性;Mg2^+参与合成的改性基质对TN和氨氮均有很好的去除效果,其中MgCo-LDHs改性基质对TN的平均去除率超过80%,对氨氮的平均去除率达到了85%;Mg2^+和Fe^3+参与合成的改性基质对氨氮的去除效果优良,其中CaFe-LDHs和MgFe-LDHs改性基质的平均去除率达到了85%以上.
As one kind of vertical-flow constructed wetlands substrates,anthracite was selected in this experiment. LDHs(layered double hydroxides) were synthesized in alkaline conditions by co-precipitation of different kinds of metal compounds,such as CaCl2,ZnCl2,MgCl2,FeCl3,AlCl3,CoCl3. The synthesized LDHs were in-situ coated onto the surface of anthracite substrate to achieve the aim of modification. Simulated test columns were constructed to study the nitrogen removal efficiency of the urban sewage using the original anthracite substrates and 9 kinds of modified anthracite substrates. The results showed that: LDHs synthesized by all the 9different kinds of methods could effectively modify the anthracite substrate by in-situ coating. With Mg^2 +involved in the synthesis of modified substrates,good TN and ammonia nitrogen removal efficiencies were observed. The modified anthracite substrates coated with MgCo-LDHs had the optimal performance with average TN and ammonia nitrogen removal efficiencies of higher than 80% and 85%,respectively. The ammonia nitrogen removal efficiencies by the modified anthracite substrates coated by LDHs reacted with Mg^2 +and Fe3 +were also high. The ammonia nitrogen removal efficiencies by modified anthracite substrates coated with CaFe-LDHs and MgFeLDHs were higher than 85%.