研究了修正的加权三阶Hermite插值算子在Orlicz空间的逼近性质,利用加权连续模、Hardy-Littlewood极大函数、HOlder不等式等工具给出了该插值算子在Orlicz空间内的逼近度估计.
The properties of modified of the third order Hermite interpolation operators are studied in Orlicz space, we use the weighted modulus of smoothness, Hardy-Littlewood great function HOlder inequality as tools to estimate the approximation of the interpolation operators in Orlicz space.