本文在Orlicz空间中研究了Bernstein-Durrmeyer算子拟中插式Bn^2r-1(f,x)逼近性质.利用2r阶Ditzian-Totik模与K-泛函的等价性,Jensen不等式,Holder不等式,Berens-Lorentz引理得到了逼近的正,逆和等价定理,从而推广了Bernstein-Durrmeyer算子拟中插式Bn^2r-1(f,x)在LP空间的逼近结果.
In the present paper, we will study the approximation property of the Bernstein- Durrmeyer quasi-interpolants Bn^2r-1(f,x) in Orlicz space. By using the 2r-th Ditzian-Totik modulus of smoothness, Jensen inequality, Holder inequality and Berens-Lorentz lemma, we obtain the direct, inverse and equivalence theorems, which generalize the approximation results of the Bernstein-Durrmeyer quasi-interpolants Bn^2r-1(f,x) in Lp space.