研究了黎曼-斯蒂尔切斯(Riemann-Stieltjes)积分的近似计算,对于被积函数,f(x)为Lipschitz连续以及高阶导数有界的情形分别得出的两种近似计算公式:矩形计算公式和梯形计算公式及其误差估计,并且通过实际例子的两种近似计算方法的不同精度,验证了文中的结果。
As it is well-known to us, Riemann-Stieltjes integral is an important generalization for Riemann integral. Here our purpose is to investigate the numerical method of R-S integral. As a result, the formulas of numerical computation and the estimation of their error are obtained, when the integrand is Lipschitz continuous and its higher derivative is bounded respectively. Furthermore, we apply them to analyse the numerical computation of some function.