位置:成果数据库 > 期刊 > 期刊详情页
基于特征优选模拟电路故障诊断方法
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:TN707[电子电信—电路与系统]
  • 作者机构:[1]电子科技大学自动化学院,成都611731
  • 相关基金:国家自然科学基金(61071029,60934002,61201009,61271035)
中文摘要:

传统基于最小二乘支持向量机模拟电路故障诊断方法都是使用单一的特征向量组合训练支持向量机所有二分类器,然而实际上每个二分类器对不同的特征向量组合有不同的分类精度。因此,提出了基于马氏距离的粒子群优化算法,为最小二乘支持向量机所有二分类器优选出近最优的特征向量组合。然后,将近最优特征向量组合用于训练和测试该支持向量机。最后把该方法应用于模拟电路早期故障诊断,实验结果表明,基于近最优特征向量组合的诊断精度要高于单一特征向量组合的诊断精度。

英文摘要:

Traditionally, multi-fault diagnosis of analog circuits based on least squares support vector machine (LSSVM) usually uses a single feature vector combination to train all binary LSSVM classifiers. However, in fact, each binary LSSVM classifier has different classification accuracy for different feature vector combinations. Therefore, the Mahalanobis distance (MD) based on particle swarm optimization (PSO) is proposed to select a near-optimal feature vector combination for each binary classifier. Then, the near-optimal feature vector combinations are used to train and test LSSVM for diagnostics of the incipient faults in analog circuits. The experimental results show that the accuracy using the near-optimal feature vector combinations is higher than the accuracy using a single vector combination.

同期刊论文项目
期刊论文 70 会议论文 9 专利 3 著作 1
期刊论文 22 会议论文 1 专利 5 著作 1
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314