主要研究每一个无限真子群都是阿贝尔群的局部幂零p-群.给出了这类群的结构的详细刻画,得到了定理1设群G是局部幂零p-群,若G不是阿贝尔群,但是G中的每一个无限真子群是阿吡尔群,则(1)当G不是幂零群时,G是秩为P—1的可除阿贝尔p-群被循环群的扩张;(2)当G是幂零群时,G是极小非阿贝尔p-群与拟循环p-群的乘积.
In this paper, the authors study locally nilpotent p-group G with all proper infinite subgroups are abelian. The authors get Let G be a locally nilpotent p-group G with all proper infinite subgroups are abel ian, then one of following holds: (1) if G is not nilpotent, G is an extension of divisible abelian p-group of rank p-- 1 by finite cyclic group ;(2) if G is nilpotent, G is a product of a minimal non-abelian p-group and a quasicyclic p-group.