位置:成果数据库 > 期刊 > 期刊详情页
面向高光谱图像分类的半监督Laplace鉴别嵌入
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP751.1[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]重庆大学光电技术与系统教育部重点实验室,重庆400044, [2]重庆市国土资源和房屋勘测规划院,重庆400020
  • 相关基金:国家自然科学基金(61101168,41371338); 中国博士后科学基金(2012M511906,2013T60837); 重庆市基础与前沿研究计划项目(cstc2013jcyj A40005); 重庆市国土房管局科技计划项目(CQGT-KJ-2012028); 博士后科研计划项目(2012M511906,2013T60837,XM2012001)资助课题
中文摘要:

为有效提取出高光谱遥感图像数据的鉴别特征,该文阐述一种融合标记样本中鉴别信息和无标记样本中局部结构信息的半监督Laplace鉴别嵌入(SSLDE)算法。该算法利用标记样本的类别信息来保持样本集的可分性,并通过构建标记样本和无标记样本的Laplace矩阵来发现样本集中局部流形结构,实现半监督的流形鉴别。在KSC和Urban数据集上的实验结果说明:该算法具有更高的分类精度,可以有效地提取出鉴别特征信息。在总体分类精度上,该算法比半监督最大边界准则(SSMMC)算法提升了6.3%~7.4%,比半监督流形保持嵌入(SSSMPE)算法提升了1.6%~4.4%。

英文摘要:

In order to extract effectively the discriminant characteristics of hyperspectral remote sensing image data, this paper presents a Semi-Supervised Laplace Discriminant Embedding(SSLDE) algorithm based on the discriminant information of labeled samples and the local structural information of unlabeled samples. The proposed algorithm makes use of the class information of labeled samples to maintain the separability of sample set, and discovers the local manifold structure in sample set by constructing Laplace matrix of labeled and unlabeled samples, which can achieve semi-supervised manifold discriminant. The experimental results on KSC and Urban database show that the algorithm has higher classification accuracy and can effectively extract the information of discriminant characteristics. In the overall classification accuracy, this algorithm is improved by 6.3%~7.4% compared with Semi-Supervised Maximum Margin Criterion(SSMMC) algorithm and increased by 1.6%~4.4% compared with Semi-Supervised Sub-Manifold Preserving Embedding(SSSMPE) algorithm.

同期刊论文项目
期刊论文 88
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739