在二维空间中讨论一类带二阶导数项的非线性Schrodinger方程整体解存在的最佳条件.根据基态的变分特征,运用势井方法和凹方法,得到了其初值问题整体解存在的一些最佳条件.
In this paper, a class of second-order derivative nonlinear Schrodinger equations in R^2 is discussed. By establishing a variational problem and applying the potential well argument and the concavity method, a sharp threshold for blow-up and global existence of the solutions to the nonlinear Schrodinger equations is given.