超精密加工是获得高形状精度、表面精度和表面完整性的必要手段。随着对产品质量和多样化的要求日益提高,对超精密加工提出更多、更高的要求。超精密加工技术已成为包含当代最新科技成果的一个复杂系统工程。介绍各种超精密加工技术的内涵、应用范围、国内外研究现状、发展过程与趋势以及未来应研究开发的重要科学技术问题。从加工精度、加工质量和加工效率角度对先进的具有代表性的超精密加工机床、超精密切削、超精密磨削和超精密抛光技术进行重点评述和比较。分析我国在超精密加工领域中存在的主要问题以及与国外先进技术的差距,对超精密加工的技术发展趋势进行预测,提出我国本领域基础研究、技术及产业发展策略与对策。
Ultra-precision machining is essential method for obtaining the highest quality in terms of form accuracy, surface finish Ultra-precision machining is essential method for obtaining the highest quality in terms of form accuracy, surface finish and surface integrity. As the higher requirements of quality and diversifications for products are put forward, it is essential to improve the precision and efficiency of ultra-precision machining. Ultra-precision machining has become a complicated systems engineering, which involves more and more last research fruits. The conception, application fields, present research status, development tendency, and the key issues of future researches on scientific and technological f of ultra-precision machining are introduced in this paper. Some advanced and typical ultra-precision machine tools, ultra-precision cutting, grinding, and polishing are reviewed and compared in terms of machining accuracy, quality and efficiency. The main problems and miss distance from the advanced technologies of China in ultra-precision machining field are analyzed. In the same time, the probable further trend of ultra-precision machining is forecasted, and the developing countermeasure and strategy of fundamental research, technologies and industry in China are given.