利用核函数及其性质,对P*(K)阵线性互补问题提出了一种新的宽邻域不可行内点算法.对核函数作了一些适当的改进,所以是不同于Peng等人介绍的自正则障碍函数.最后证明了算法具有近似0((1+2k)n3/4;lognμo/ε)多项武复杂性,是优于传统的基于对数障碍函数求解宽邻域内点算法的复杂性.
In this paper, we propose a new large-update interior-point algorithm for P*(k) linear complementarity problems based on kernel functions .We improve some mild conditions on the kernel functions and give a new class of kernel functions .so it is different from the selfregular, functions introduced by Peng. Finally, we show that the complexity of the algorithm 3 has so far worst case O((1 + 2k)n3/4 lognμo/ε),which is better than the classical large-update algorithm based on the classical logarithmic barrier functions.