位置:成果数据库 > 期刊 > 期刊详情页
基于核磁共振成像技术的香梨褐变检测
  • ISSN号:1000-1298
  • 期刊名称:农业机械学报
  • 时间:2013.12.1
  • 页码:169-173
  • 分类:S121[农业科学—农业基础科学] O657.2[理学—分析化学;理学—化学]
  • 作者机构:[1]浙江大学生物系统工程与食品科学学院,杭州310058, [2]浙江大学医学院附属邵逸夫医院放射科,杭州310016
  • 相关基金:国家自然科学基金资助项目(31201137)、国家高技术研究发展计划(863计划)资助项目(2011AA100705)、农业科技成果转化资金资助项目(2011GB23600008)、国家公益性农业专项资助项目(200903044)和中央高校基本科研业务费专项资金资助项目
  • 相关项目:除草剂胁迫下油菜生长生理与根系形态变化机理和无损检测方法研究
中文摘要:

将核磁共振成像技术与人工神经网络理论相结合,对香梨内部褐变进行了检测。在磁共振T2加权图像中选取果核区域作为感兴趣区域,提取出反映褐变特性的10个微观纹理特征参数,建立了BP神经网络模型进行识别研究。针对BP神经网络模型存在的不足,利用遗传算法对网络模型的权值和阈值进行优化。通过验证性试验发现:对于4组香梨样本,优化后BP神经网络模型的平均正确识别率为92.50%,比未优化模型的平均正确识别率80.83%,提高了11.67个百分点;同一组香梨样本相比较,优化后模型的识别效果也均优于未优化模型,每组香梨的识别率都得到了不同程度的提高。结果表明:遗传算法优化后的BP神经网络模型具有很好的预测精度和泛化能力,可以实现香梨内部褐变的无损检测。

英文摘要:

Magnetic resonance imaging (MRI) technology and artificial neural network theory were used to discriminate the browning disease inside the fruit. Areas corresponding to the core of fragrant pear in T2-weighted image were selected to the region of interest (ROI). Quantitative analysis of the ROI was achieved by extracting ten texture features that reflected the browning characteristics. Back propagation (BP) neural network was carried out on the statistical features to predict the internal browning of fragrant pear. Genetic algorithm (GA) was adopted to optimize the initial weights and threshold in BP neural network. For four groups of samples, the optimization model showed 92.50% accuracy in detecting the presence of browning in fragrant pear, compared with the correct recognition rate 80.83% of the non- optimization, an 11.67 percent increased. For the same group samples, the recognition results of optimized model were also better than the non-optimized model and the correct recognition rate of each group was improved to varying degrees. The result of our experiment shows that the optimized model has good predictive accuracy and generalization ability to identify the internal browning of fragrant pear.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业机械学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业机械学会 中国农业机械化科学研究院
  • 主编:任露泉
  • 地址:北京德胜门外北沙滩一号6号信箱
  • 邮编:100083
  • 邮箱:njxb@caams.org.cn
  • 电话:010-64882610 64867367
  • 国际标准刊号:ISSN:1000-1298
  • 国内统一刊号:ISSN:11-1964/S
  • 邮发代号:2-363
  • 获奖情况:
  • 荣获中国科协优秀期刊二等奖,1997~2000年连续4年获中国科协择优资金,被列入中国期刊方阵,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:42884