基于田间试验的统计分析和SSR分子标记的遗传参数评估,分析了3个玉米人工合成群体GP3、GP4和GP5经4轮控制双亲混合选择的改良效应。结果表明,多数性状在不同群体及不同轮回间存在真实的遗传差异,粒深遗传增益以GP4〉GP5〉GP3,穗行遗传增益以GP3〉GP5〉GP4,各个群体C4的粒深、穗行均值都显著或极显著大于C0,直接选择效应显著;株高和穗位高随选择周期增加呈明显增加趋势,且GP4的增幅显著大于GP3和GP5,单株产量及穗粗的遗传增益以GP4大于GP3和GP5,各群体多数产量性状的均值以C4显著大于C0,相关选择效应显著;除株高、穗位高外,其他性状GCA变异群体间差异达显著或极显著水平,GP5多数产量性状的GCA优于GP3和GP4,各群体多数产量性状的GCA效应值随改良进展呈增加趋势,对照优势大于8%的大部分测交组合均为各群体C4所配组合,间接选择效应显著;随改良世代进行,群体部分性状的表型变异系数虽有所减小,但变化幅度不大;基于SSR分子标记估算的群体内遗传相似系数,GP3和GP4改良后代呈略增趋势,GP5变化不大,对于群体基因型数,GP3和GP4随改良代数增加呈略减趋势,GP5呈略增趋势。上述结果说明,适度控制双亲混合选择在有效改良群体的同时,还能较好地保持群体的遗传多样性,但不同基础群体及不同性状间,其改良效应存在一定的差异。
On the basis of statistical analysis of field test and genetic parameters evaluation by Simple Sequence Repeat (SSR) markers, the experiment was conducted with three maize synthetic populations GP3, GP4, and GP5 with mass selection for 4 cycles. The results showed that there existed genetic differences in most traits for the different populations and cycles, and the significant interaction effects between populations with cycles. The genetic gain was GP3〈GP5〈GP4 in kernel depth and GP3〉 GPS〉GP4 in rows per ear. After 4 cycles of mass selection, there was an obvious increase in the mean kernel depth and rows per ear, which displayed significant direct responses. Plant height and ear height exhibited an increase with selection, and the increase in GP4 was significantly higher than that in GP3 and GPS. The genetic gain of GP4 in yield per plant and ear diameter was higher than that of GP3 and GPS. Compared the cycle C4 with CO, most yield traits were improved for all the populations, which implied a significant correlated response. Excluding plant height and ear height, the differences in GCA were significant for the other traits The GCA effects of GP5 in most yield traits were higher than those of GP3 and GP4. The population improvement by mass selection resulted in an increase in the GCA effects of most yield traits. Most test-cross combinations, with more than 8% of yield per plant over the check, were derived from the cycle C4 of all the populations, which displayed significant indirect responses to mass selection. For the coefficients of variation in phenotypic traits, there were no obvious changes. For the genetic similarity coefficients of intrapopulation, there were a gradual increase in the derivatives of GP3 and GP4 and no changes in those of GP5. The genotype number in the derivatives of GP3 and GP4 showed a decreasing tendency while a little increases in those of GP5. The results above indicated that populations might be improved effectively and retained a high genetic diversity by mass selec