Approximation Algorithm Based on Chain Implication for Constrained Minimum Vertex Covers in Bipartite Graphs
- ISSN号:1000-9000
- 期刊名称:《计算机科学技术学报:英文版》
- 时间:0
- 分类:O189[理学—数学;理学—基础数学]
- 作者机构:[1]School of Information Science and Engineering, Central South University, Changsha 410083, China, [2]Department of Computer Science, Texas A & M University, College Station, TX 77843, U.S.A.
- 相关基金:This work is supported by the National Natural Science Foundation of China under Grant Nos. 60433020 and 60773111, the National Basic Research 973 Program of China under Grant No. 2008CB317107, the Provincial Natural Science Foundation of Hunan under Grant No. 06J J10009, the Program for New Century Excellent Talents in University under Grant No. NCET-05-0683 and the Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0661.
中文摘要:
偶图(Min-CVCB 问题) 上的抑制最小的顶点覆盖问题是一个重要 NP 完全的问题。这篇论文基于链牵连的技术为这个问题论述一个多项式时间近似算法。为任何给定的经常的 ɛ 】 0 ,如果 Min-CVCB 问题的一个例子有尺寸的一个最小的顶点封面( k u , k l ),我们的算法构造尺寸的一个顶点封面( k * u , k * l ),令人满意的最大{ k * u /k u , k * l /k l } ≤ 1 + ɛ。这篇文章的联机版本(做 i:10.1007/s11390-008-9180-5 ) 包含增补材料,它对授权用户可得到。
英文摘要:
The constrained minimum vertex cover problem on bipartite graphs (the Min-CVCB problem) is an important NP-complete problem. This paper presents a polynomial time approximation algorithm for the problem based on the technique of chain implication. For any given constant ε〉 0, if an instance of the Min-CVCB problem has a minimum vertex cover of size (ku, kl), our algorithm constructs a vertex cover of size (ku^*, kl^*), satisfying max{ku^*/ku, kl^*/kl} ≤ 1 + ε.