位置:成果数据库 > 期刊 > 期刊详情页
基于遗传算法和最小二乘支持向量机可靠性分配
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]重庆大学机械工程学院,重庆400030
  • 相关基金:国家“863”计划资助项目(2009AA04Z119); 国家自然科学基金资助项目(50835008); 华中科技大学数字制造国家重点实验室开放基金资助项目
中文摘要:

为了提高系统可靠性的精确快速分配,采用支持向量机对系统可靠性进行建模,采用逆向思维对系统可靠性进行分配;为了提高求解速度和鲁棒性,用最小二乘法对支持向量机进行算法优化,并用遗传算法对最小二乘支持向量机进行参数优化;为了提高分配精度,用三角模糊数进行模糊处理;最后针对某系统的可靠性,采用遗传算法优化和模糊处理的最小二乘支持向量机进行分配,并与神经网络和普通遗传算法优化的最小二乘支持向量机进行对比。结果表明,用遗传算法优化和模糊数处理的最小二乘支持向量机具有分配精度高,泛化能力强等优点。

英文摘要:

For improving precise and rapid system reliability allocation,made the model by support vector machines,used the reliability by reverse thinking. In order to improve the solution speed and robustness,allocated least square method to optimization. At the same time used genetic algorithmfor parameter optimization in least squares support vector machines. Used the triangle fuzzy number for improving distribution accuracy. At last allocated some system reliability by using least squares support vector machines which was optimized by genetic algorithm and triangle fuzzy number. Compared with neural network,the results show the least squares support vector machines which was optimized by genetic algorithm and triangle fuzzy number has the advantages include such as high accuracy and strong generalization ability.

同期刊论文项目
期刊论文 172 会议论文 2 专利 24 著作 1
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049