位置:成果数据库 > 期刊 > 期刊详情页
基于学习的高分辨率掌纹细节点质量评价方法
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京大学信息科学技术学院智能科学系,北京100871, [2]机器感知与智能教育部重点实验室北京大学,北京100871
  • 相关基金:国家自然科学基金(61333015);国家重点基础研究发展计划(973)(2011CB302400)
中文摘要:

细节点在高分辨率掌纹匹配中扮演了重要角色,然而掌纹图像受到主线、褶皱线等的影响,提取出的细节点质量参差不齐。所以,对细节点进行质量评价并去除伪细节点,成为一个研究课题。提出了一种基于学习的高分辨率掌纹细节点质量评价方法。首先使用了基于图像的 Gabor 卷积响应和复数滤波响应等的一系列特征,用来对细节点局部进行冗余描述;然后,把每个特征作为弱分类器,用 AdaBoost 算法进行多层训练,挑选出对真伪细节点判别效果最理想的特征;最后,把弱分类器加权线性组合的响应分数作为细节点质量的得分,筛选出得分在阈值以上的细节点作为真细节点。该方法的实验结果与基于傅里叶变换的方法相比,能够更好地区分真伪细节点,对细节点的质量做出了更好的评价。

英文摘要:

While minutiae is important for high-resolution palmprint matching, the quality of minutiae is affected by principal lines, creases and other noises, and therefore it is necessary to estimate the quality of minutiae and to exclude poor minutiae. In this paper, a minutiae quality estimation algorithm based on learning for high-resolution palmprint is proposed. First, a series of features obtained by applying Gabor convolution, complex filtering, etc., are used to describe the local area of minutiae redundancy. Then, with each feature as a weak classifier, AdaBoost algorithm is applied in multi-layered training to identify the best features for discriminating minutiae. Finally, the response of weighted linear combination of weak classifiers is used as minutiae quality score, and minutiae with score above the threshold is selected as true minutiae. Comparing with the method based on Fourier transform response, the presented method is superior at distinguishing true from false minutiae, and provides better evaluation of minutiae quality.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609