This work investigated C2F6/O2 /Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the increase in the low-frequency (LF) power led to an increased ion impact, prompting the dissociation of C2F6 with higher reaction energy. As a result, fluorocarbon radicals with a high F/C ratio decreased. The increase in the discharge pressure led to a decrease in the electron temperature, resulting in the decrease of C2F6 dissociation. For the C2F6/O2 /Ar plasma, the increase in the LF power prompted the reaction between O2 and C2F6 , resulting in the elimination of CF3 and CF2 radicals, and the production of an F-rich plasma environment. The F-rich plasma improved the etching characteristics of SiCOH low-k films, leading to a high etching rate and a smooth etched surface.
This work investigated C2F6/O2/Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the increase in the low-frequency (LF) power led to an increased ion impact, prompting the dissociation of C2F6 with higher reaction energy. As a result, fluorocarbon radicals with a high F/C ratio decreased. The increase in the discharge pressure led to a decrease in the electron temperature, resulting in the decrease of C2F6 dissociation. For the C2F6/O2/Ar plasma, the increase in the LF power prompted the reaction between 02 and C2F6, resulting in the elimination of CF3 and CF2 radicals, and the production of an F-rich plasma environment. The F-rich plasma improved the etching characteristics of SiCOH low-k films, leading to a high etching rate and a smooth etched surface.