位置:成果数据库 > 期刊 > 期刊详情页
基于LS-SVM的软测量模型及其工业应用
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中南大学信息科学与工程学院,湖南长沙410083
  • 相关基金:国家自然科学基金资助项目(60634020)
中文摘要:

最小二乘支持向量机(LS-SVM)是支持向量机(SVM)的一种扩展,其算法简练,计算速度快;利用LS-SVM进行特征提取,可以有效地降低输入样本维数,缩减模型的运算时间,同时LS-SVM又具有优越的非线性回归能力;为实现氧化铝高压溶出过程中苛性比值在线测量,建立了一种基于LS-SVM的软测量模型,并将此模型应用于实际生产;工业数据的仿真结果表明该模型具有较高的预测精度和范化能力,能满足在线检测、实时控制的要求。

英文摘要:

The Least Squares Support Vector Machines(LS-SVM),a branch of Support Vector Machines(SVM),offers easier algorithm and better computability.Feature extraction by LS-SVM,can reduce the dimension of input samples and decrease the computing time of model.And also LS-SVM has ascendant capability of regression.To measure the ratio of soda to aluminate online,a soft sensing model based on LS-SVM is proposed and applied in the process of high pressure digestion of Alumina.The simulation result shows that the LS-SVM model is more precise and stronger,also it can satify the requirement of real time control.

同期刊论文项目
期刊论文 287 会议论文 65 获奖 9 专利 15 著作 2
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924