位置:成果数据库 > 期刊 > 期刊详情页
GIS支持下应用PSO—SVM模型预测滑坡易发性
  • ISSN号:1671-8860
  • 期刊名称:《武汉大学学报:信息科学版》
  • 时间:0
  • 分类:P208[天文地球—地图制图学与地理信息工程;天文地球—测绘科学与技术] P237.9[天文地球—摄影测量与遥感;天文地球—测绘科学与技术]
  • 作者机构:[1]中国地质大学(武汉)地球物理与空间信息学院,湖北武汉430074, [2]国土资源部城市土地资源监测与仿真重点实验室,广东深圳518034
  • 相关基金:国家自然科学基金(41501470);国土资源部城市土地资源监测与仿真重点实验室开放基金(KF-2015-01-006);资源与环境信息系统国家重点实验室开放基金.
中文摘要:

滑坡灾害易发性预测是滑坡监测、预警与评估的关键技术。如何有效地选取评价因子和构建预测模型是滑坡灾害定量预测研究中的难题。本文以三峡库区长江干流岸坡作为研究区,通过地形、地质和遥感等多源数据融合,提取滑坡孕灾环境和诱发因素的信息作为评价因子。在此基础上,针对滑坡灾害的非线性和不确定性特征,采用粒子群算法对支持向量机模型参数进行全局寻优,构建粒子群算法(particle swarm optimization,PSO)一支持向量机(support vector machine,SVM)模型,定量预测滑坡易发性。最后通过分类精度比较分析基于格网单元和对象单元的滑坡易发性预测精度,结果表明,基于对象单元的PSO-SVM预测精度较高,其曲线下面积为0.8415,Kappa系数为0.8490,预测结果与野外实际调查情况较为一致,可为三峡库区滑坡防灾减灾工作提供参考。

英文摘要:

Landslide susceptibility prediction is the key technology in landslide monitoring, early warning, and assessment. The core problem in quantitative prediction of landslide hazards is the effective selection of conditioning factors and prediction models. In this paper, the Three Gorges Reservoir area was selected as a case study to predict landslide susceptibility. First,, key landslide-related factors were selected as input variables using topographic, geological, and remote sensing data. Secondly, according to the nonlinear and uncertainty characteristics of landslides, a PSO-SVM model was trained and used to assess landslide susceptibility. Finally, the prediction results of grid- and object-based prediction models were validated by comparing them with known landslides using the classification accuracy. The results show that object-based PSO-SVM possesses high prediction accuracy with the area under curve of 0. 841 5 and a Kappa coefficient of 0. 849 0. These experimental results are consistent with field investigations and can provide a reference for landslide prevention and reduction in the Three Gorges, China.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉大学学报:信息科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉大学
  • 主编:刘经南
  • 地址:湖北武汉珞珈山
  • 邮编:430072
  • 邮箱:whuxxb@vip.163
  • 电话:027-68778045
  • 国际标准刊号:ISSN:1671-8860
  • 国内统一刊号:ISSN:42-1676/TN
  • 邮发代号:38-317
  • 获奖情况:
  • 全国优秀科技期刊,全国优秀高校自然科学学报一等奖,湖北省优秀期刊称号
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰地学数据库,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24217