利用中国剩余定理研究了环Z_k上循环码及其对偶码,其中k=(multiply from (p_i) i=1 to s)~m,p_i表示不同的素数,m是一个正整数,并且p_i不能整除码长n,给出了一个非平凡循环自对偶码存在的充要条件,得到了中国积循环码最小距离的上界,并且确定了中国积循环码的秩和最小生成集.
In this paper,we describe the Chinese Remainder Theorem for studying cyclic and dual cyclic codes over the ring Zk,where k=(multiply from (pi) i=1 to s)m,the pi are distinct primes and m is a positive integer,also with the condition that the code length n cannot be divided by pi.A necessary and sufficient condition for the existence of nontrivial cyclic self-dual codes is given. The upper bound of minimum distance of such cyclic codes is also obtained.Furthermore,we determine the minimal generator set and the rank of such cyclic codes.