文章研究了环 R= Fq+ u Fq上1-生成l准循环码,其中 u2=0,q是素数幂;通过对其结构的研究,确定了该环上任意长度准循环码的生成元表示形式及最小生成元集,最后将准循环码的结果推广到 R上任意长度的准扭码上。
In this paper ,one-generator quasi-cyclic codes over the ring R= Fq+ uFq are studied ,w here u2 =0 and q is a prime power .By exploring the structure ,the form of generators and the minimal gen-erating sets of quasi-cyclic codes of an arbitrary length are determined .Finally ,the results of quasi-cyclic codes are extended to quasi-twisted codes over R of an arbitrary length .