位置:成果数据库 > 期刊 > 期刊详情页
基于自然标注信息和隐含主题模型的无监督文本特征抽取
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京语言大学大数据与语言教育研究所,北京100083, [2]中国语言政策与标准研究所,北京100083
  • 相关基金:国家自然科学基金(61300081;61170162); 国家社科重大基金(12&ZD173); 国家语委科研基金(YB125-42); 北京语言大学研究生创新基金(14YCX074)
中文摘要:

术语和惯用短语可以体现文本特征。无监督的抽取特征词语对诸多自然语言处理工作起到支持作用。该文提出了"聚类-验证"过程,使用主题模型对文本中的字符进行聚类,并采用自然标注信息对提取出的字符串进行验证和过滤,从而实现了从未分词领域语料中无监督获得词语表的方法。通过优化和过滤,我们可以进一步获得了富含有术语信息和特征短语的高置信度特征词表。在对计算机科学等六类不同领域语料的实验中,该方法抽取的特征词表具有较好的文体区分度和领域区分度。

英文摘要:

Text features are often shown by its terms and phrases. Their unsupervised extraction can support various natural language processing. We propose a "Cluster-Verification" method to gain the lexicon from raw corpus, by combining latent topic model and natural annotation. Topic modeling is used to cluster strings, while we filter and optimize its result by natural annotations in raw corpus. High accuracy is found in the lexicon we gained, as well as good performance on describing domains and writing styles of the texts. Experiments on 6 kinds of domain corpora showed its promising effect on classifying their domains or writing styles.

同期刊论文项目
期刊论文 12 会议论文 8
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136