In light of the light emission from cavitation bubbles under certain conditions, the phenomena of the cavitation bubble luminescence in the hydraulic cone-type throttle valve is focused in this paper. Firstly,the software of automatic dynamic incremental nonlinear analysis( ADINA) is applied to studying the flow field of the flow channel of the cone-type throttle valve. And the pressure distribution of the valve flow channel is obtained. The easyhappening area of cavitation in the cone-type throttle valve is also found out by ADINA. Then,the experimental research on the conetype throttle valve is carried out in this paper. The changing law of the hydraulic oil temperature in the corresponding region under different system pressure and the backpressure condition are experimentally researched. The relationship between the luminescence intensity and the cavitation intensity,the pressure,and the temperature are also studied. Finally,a summary of the causal relationship between the luminescence and cavitation in the cone-type throttle valve,the cavitation effect on the hydraulic oil temperature,and the method for the inhibition of cavitation bubble luminescence are presented. The results show that the light intensity increases with the increase of the cavitation intensity,and the luminescence can be inhibited by the increase of backpressure.
In light of the light emission from cavitation bubbles under certain conditions, the phenomena of the cavitation bubble luminescence in the hydraulic cone-type throttle valve is focused in this paper. Firstly,the software of automatic dynamic incremental nonlinear analysis( ADINA) is applied to studying the flow field of the flow channel of the cone-type throttle valve. And the pressure distribution of the valve flow channel is obtained. The easyhappening area of cavitation in the cone-type throttle valve is also found out by ADINA. Then,the experimental research on the conetype throttle valve is carried out in this paper. The changing law of the hydraulic oil temperature in the corresponding region under different system pressure and the backpressure condition are experimentally researched. The relationship between the luminescence intensity and the cavitation intensity,the pressure,and the temperature are also studied. Finally,a summary of the causal relationship between the luminescence and cavitation in the cone-type throttle valve,the cavitation effect on the hydraulic oil temperature,and the method for the inhibition of cavitation bubble luminescence are presented. The results show that the light intensity increases with the increase of the cavitation intensity,and the luminescence can be inhibited by the increase of backpressure.