在充分考虑纳米柱结构太阳能电池的几何特性与低反射率特性的基础上,建立了硅基纳米柱太阳能电池的数学模型,分析了电池单元纳米柱的长度、硅衬底缺陷密度以及表面空穴的复合速率对纳米柱太阳能电池的开路电压、短路电流以及转换效率的影响。结果表明:在纳米柱电池设计制作过程中,低反射率仅是高性能电池的关键因素之一;电池纳米柱的最佳长度、表面复合速率和硅的缺陷密度的大小也是重要因素;当表面复合速率和体缺陷密度较大时,纳米柱的长度不宜过大。
A mathematical model about silicon nanowire solar cell was developed under fully consideration of geometric properties and low reflectivity of the solar cell in nanowire structure. Effects of length of the nanowire solar cells unit, defect density of silicon material and surface hole recombination velocity on short circuit current, open circuit voltage and conversion efficiency of the nanowire solar cells were analyzed by the model. The simulated results show that in design and production process of silicon solar cells with nanowire structure, a low reflectance is only one key point of high-performance solar cell, and the surface recombination velocity, the nanowire length and the defect density are also important factors, they should be comprehensive considered. When the surface hole recombination velocity and defect density is bigger, the length of nanowire should not be too long.