利用Newton多边形,对平面上零级Dirichlet级数和随机Dirichlet级数的增长性进行了深入研究。在较宽的系数条件下给出了零级Dirichlet级数的增长性和系数间的关系。讨论了平面上的随机Dirichlet级数f(s,ω)=∑∞n=0bnXn(ω)eλns的增长性,得出了当随机变量序列{Xn}满足条件:存在α〉0,β〉0,使得supn≥0E(|Xn|α)〈∞,supn≥0E(|Xn|-β)〈∞时的随机Dirichlet级数f(s,ω)=∑∞n=0bnXn(ω)eλns的下级和Dirichlet级数f(s)=∑∞n=0bneλns的系数间的关系,以及f(s,ω)=∑∞n=0bnXn(ω)eλns的增长级与f(s)=∑∞n=0bneλns的系数间的关系。
The growth of the zero order Dirichlet series and random Dirichlet on the plane is thoroughly studied using Newton polygon under relatively loose coefficient conditions.It gains the relations between the lower-order and the coefficients of the zero-order Dirichlet series.The growth of random Dirichlet series f(s,ω)=∑∞n=0bnXn(ω)eλns is studied on the plane.The relations between the lower-order of the random Dirichlet series f(s,ω)=∑∞n=0bnXn(ω)eλns and the coefficients of Dirichlet series f(s)=∑∞n=0bneλns is obtained,and the relations between the order of the random Dirichlet series f(s,ω)=∑∞n=0bnXn(ω)eλns and the coefficients of Dirichlet series f(s)=∑∞n=0bneλns is obtained,when random variable sequence{Xn}satisfies the conditions: α0 and β0 such that supn≥0E(|Xn|α)∞ and supn≥0E(|Xn|-β)∞.