该文较系统地研究了一类随机系数不要求同分布的B-值双随机Dirichlet级数的收敛性与增长性.证明了这类B-值双随机Dirichlet级数与某Dirichlet级数a.s.有相同的收敛、一致收敛和绝对收敛的横坐标;并证明了这类B-值双随机Dirichlet级数与某Dirichlet级数a.s.有相同的增长级和(p,q)(R)-级,以及系数经过重排后增长级a.s.保持不变的充要条件.
By studying the convergence and the growth of bi-random Dirichlet series sum from n=0 to∞a_nX_n(ω)e~(-λ_n(ω)s) in with coefficients {X_n(ω):n≥0},being unidentically distributed B-valuedφ-mixing random sequences,satisfying d~pσ_n~p■d~pE||X_n||p≤E~p||X_n||∞(p 1,d0),under centain suitable conditions,the authors obtain such results:on the whole plane, the bi-random Dirichlet series and some Dirichlet series almost surely have the same abscissa of convergence(uniform convergence,or absolute convergence),the same order of growth and (p,q)(R)-order,and the necessary and sufficient conditions of the bi-random Dirichlet series almost surely with the same order after rearrangement of the coefficients.