对于开平面上的有限正级亚纯函数在其Borel方向上的性质,A.Rauch证明了一个重要定理.本文对于开平面上K-拟亚纯映射在Borel方向上的性质进行了研究,证明了正级(包括无穷级)和部分零级K-拟亚纯映射在Borel方向上一定存在充满圆序列,推广了A.Rauch的结果.
For the properties in Borel directions had proved an important theorem. We study the planes , and prove the existence of filling discs in of finite positive order meromorphic functions in the planes. A. Rauch properties in Borel directions of K- quasimeromorphic mapping in the Borel directions of positive order (include in-finite) and some zero order K- quasimeromorphic mapping to generalize the results A. Rauch.