利用复的Hilbert空间中的Riesz基{xj}及其对偶Riesz基{yj},引入新的算子Ф({xj},{yj},{gj})(z),来构造出复的Hilbert空间中的单位球B上的一些双全纯凸映照或双全纯星形映照,利用复的Hilbert空间中的框架理论,得到此算子的一些性质,给出由复平面C中的单位圆△上的单叶凸函数或单叶星形函数,来构造复的Hilbert空间X中的单位球B上的双全纯凸映照或双全纯星形映照的一些具体例子,同时也引入一些双全纯凸映照或双全纯星形映照的子类.
This paper introduces a new operator Ф({xj}, {yj}, {gj})(z) by using a Riesz basis {xj} and its dual Riesz basis {yj} in a complex Hilbert space, in purpose to construct some biholomorphic convex mappings or biholomorphic starlike mappings on the unit ball B in a complex Hilbert space. Using the theory of frames in the complex Hilbert spaces, the authors obtain some properties of this operator and give some concrete examples of biholomorphic convex mappings or biholomorphic starlike mappings on B in a complex Hilbert space X from univalent convex functions or univalent starlike functions on the unit disc △ in the complex plane C. Meanwhile, some subclasses of biholomorphic convex mappings or biholomorphic starlike mappings are also introduced.