本文研究了一类大型稀疏Hermitian鞍点线性系统Az≡(B E E* 0)(x y)=(f g)≡b系数矩阵的特征值,其中B∈C^p×p是Hermitian正定阵矩阵,E∈C^p×q是列降秩.本文分别给出了该系数矩阵正特征值与负特征值界的一个估计式,同时通过数值算例验证本文所给出的特征值界的估计是合理且有效的。
In this paper, we consider the eigenvalues of the coefficient matrix on a class of the large, sparse and Hermitian system of linear equations Az≡(B E E* 0)(x y)=(f g)≡b,where B ∈C^p×p is Hermitian positive definite and E ∈ C^p×q is deficient column rank. And we derive the positive eigenvalue bounds and the negative eigenvalue bounds of the coefficient matrix, respectively. Moreover, we give a numerical example to show the rationality and effectiveness of the eigenvalue bounds.