为了解决θ(t)型奇异积分算子在Lipschitz空间上的有界性问题,通过将标准的奇异积分核K(x,y)改为θ(t)型核K(x,y),得到θ(t)型奇异积分算子Tf(x)=∫K(x,y)f(y)dμ(y)在μ为非双倍测度时,算子Tε在Lipschitz空间上的一个等价条件:‖Tε1‖Λβ≤c1 Tε:Λβ→Λβ有界且‖Tε‖Λβ→Λβ≤c2。
In order to solve the boundedness problem of the θ(t)-type Calderón-Zygmund integral operator in lipschitz spaces,a θ(t)-type kernel in place of a standard singular integral kernel is used,when μ is non doubling measures it could get that the following two statements are equivalent:a)‖Tε1‖Λβ≤c1;Tε:Λβ→Λβare bounded and‖Tε‖Λβ→Λβ≤c2.