利用Sharp极大函数方法讨论了非齐型空间上Toeplitz型算子θα^b在空间L^p,λ(μ)的有界性,证明了该算子是从空间L^q,λ2(μ)到空间L^t,λ1(μ)有界的.
By the methods of Sharp maximum function,the boundedness of the general Toeplitz-Type operator θα^b on the L^p,λ(μ) space is discussed.And it is proved that the Toeplitz-Type operator θbα is bounded from L^q,λ2(μ) space to L^t,λ1(μ) space.